
SALmon - A Service Modeling Language and Monitoring Engine

Viktor Leijon∗ and Stefan Wallin
Luleå University of Technology Skellefteå

SE-931 87 Skellefteå Sweden
Email: leijon@ltu.se, stewal@ltu.se

Johan Ehnmark
Data Ductus Nord AB

SE-931 31 Skellefteå Sweden
Email: johan.ehnmark@dataductus.se

Abstract

To be able to monitor complex services and examine
their properties we need a modeling language that can ex-
press them in an efficient manner. As telecom operators
deploy and sell increasingly complex services the need to
monitor these services increases.

We propose a novel domain specific language called
SALmon, which allows for efficient representation of ser-
vice models, together with a computational engine for eval-
uation of service models. This working prototype allows us
to perform experiments with full scale service models, and
proves to be a good trade-off between simplicity and expres-
sive power.

1 Introduction

Operators want to manage services rather than the net-
work resources which are used to deliver the services. This
change of focus is driven by several factors; increased com-
petition, more complex service offerings, distribution of
services, and a market for Service Level Agreements [14].

A result of this transition is an increasing need to pre-
dict, monitor and manage the quality of the service that is
delivered to the end users. However, the complexity of un-
derstanding and modeling services is a serious obstacle.

We want to find a way to model Services, Service Level
Agreements and the structure underlying them.

Service modeling is intrinsically hard, since we need
to express calculations, types and dependencies. Current
UML-based approaches tend to hide this without really pro-
viding the expressive strength needed. On the other hand,
using traditional object-oriented programming languages
gives the expressive strength but creates a gap between the
model and the domain experts. Time-dependent calcula-
tions are often complicated or unnatural to express in these
languages.

∗This work is partly supported by the EU’s Sixth Framework Pro-
gramme project SOCRADES.

An implementation challenge is to manage the volume
of service types and instances. Service providers have large
infrastructure and service portfolios. There can be several
million cells, edge devices, areas and customers.

Managing a large number of object instances with cal-
culated Key Performance Indicators, including indicators
which are calculated over time intervals, have computa-
tional challenges which are not addressed in current solu-
tions. Time is an inherent dimension in service monitoring
and SLA management for several reasons. We need to be
able to manage late arrival of data, there may be delays be-
tween the collection of a key performance indicator and its
introduction into the SLA system for instance due to batch-
ing. The actual time-stamp must be used in the overall cal-
culation of status which may require recalculation. Opera-
tors also want to make “time-journeys”, looking backwards
and forwards to understand how service quality has devel-
oped. Furthermore, SLAs contain time variables in the form
of requirements on time-to-repair and availability measure-
ments.

It is vital to be able to provide different views for dif-
ferent users. Naive attempts to model services use a tree
structure where Key Performance Indicators are aggregated
upwards in the tree. However, different roles in the orga-
nization require different types of aggregation views: per
customer, per site, per area, per service, and ad-hoc group-
ing of service instances.

The main components of our solution are a dedicated
service modeling language and a run-time environment for
calculating the service status. The language is an object-
oriented functional language tailored to the domain-specific
requirements.

This paper makes the following main contributions to-
wards a useful service monitoring engine:

• We give an overview of the design considerations that
went into SALmon, a novel language for writing ser-
vice descriptions (Section 2).

• This language has been implemented in the form of a
prototype implementation of a calculation engine that



we discuss in Section 3

• Finally we examine a few typical scenarios and how
they can be handled in our system (Section 4).

2 The modeling language

We employ a tailor-made programming language for
defining services and service level agreements. This en-
ables us to create services using the well understood meth-
ods of program construction. The language has two main
purposes: first, it will define the structure of the model, and
second, it will define the relationship between parameters
and determine how they will be computed.

The language is a simple functional language for defin-
ing calculation rules. Calculations are associated with prop-
erties in object to facilitate the object-oriented structure of
a service model.

Due to the nature of service modeling, the programming
language must be able to treat time as part of the normal
syntax: all variables are seen as arrays indexed by a time
stamp. It is possible to use the time-index syntax to retro-
spectively change the value of variables.

List comprehension and an extensive set of built-in func-
tions provide the power needed to express complex models.
To make the language more tangible we present a simpli-
fied example taken from a model of a GSM network, see
Section 2.3. The language has two fundamental layers: the
Definition Layer and the Instantiation Layer.

2.1 Definition Layer

The definition layer defines the classes and calculations
in the model. Core concepts that we want to represent as
classes are Services and SLAs. Classes have inputs, an-
chors, attributes and properties:

Inputs define a time-indexed variable that is mapped to
an external data source. Typical external sources are
probes, alarms, performance data and trouble-tickets.

Anchors label connections to other class instances and
hence provide the basis for building structures from
service objects.

The definition layer only defines the name of the an-
chor and its multiplicity, so that an anchor is defined
to have either exactly one anchored instance or zero or
more.

Properties are values that can be left undefined in a class
definition to yield an abstract base class. Properties
can be defined or redefined in sub classes to model dif-
ferentiated service levels.

Figure 1. Sample Model

Attributes define calculation rules for parameters in a strict
purely functional language.

The calculation rules have knowledge of which in-
stance of the attribute is being evaluated, and can use
that together with attributes, properties and other an-
chored objects to calculate values.

Code reuse is facilitated through an inheritance system
where subclasses can override and redefine attributes and
properties

The definition layer cannot create new objects, only de-
fine classes. The sources for inputs are not defined here.
Different systems can feed the same input and using unde-
fined inputs will result in undefined results.

2.2 Instantiation Layer

The instantiation layer creates instances of the service
classes, assigns properties and establishes connections be-
tween instances through anchors.

The anchoring of instances creates a directed graph: G =
(V,E) where the vertices V are service objects and edges
E are connections to anchors. The graph may be connected
or disconnected. Common special case for service models
are trees and forests.

SALmon has dedicated constructs to ease instantiation
and anchoring of instances. Since we are working with a
large amount of service instances and relationships, there
are dedicated iterator constructs to simplify the process.

2.3 Example

We illustrate our language with a simple model with ser-
vice objects for a mobile network. The purpose of the model
is to provide SLAs for mobile voice services in dedicated
areas. The input data source is trouble-tickets which cover
both technical problems derived from alarms and customer
complaints. A sketch of the sample models is in Figure 1.

Four classes are defined in Figure 2. The first class,
GSMCell, defines a single input: the number of open trou-



class GSMCell
input openTickets
ok = (openTickets == 0)

end

class GSMArea
anchor* cells
ok = allTrue cells.ok

end

class GSMService
anchor* areas
ok = allTrue areas.ok

end

class GSMServiceLevel
anchor service

property OutageMeasurementPeriod
property MaxOutageTime

okSLA = downtime < MaxOutageTime
downtime =
totalFalseTime service.ok@(NOW,

NOW-OutageMeasurementPeriod)
end

Figure 2. Classes for Areas and Cells

ble tickets associated with the cell. The boolean attribute
ok is true only when the number of open tickets is zero.

The second class, GSMArea defines an anchor point for
cells. It also defines another attribute ok which depends on
the ok attribute of all anchored cells. When the area is in-
stantiated it is anchored to the cells that cover an important
area for an SLA customer, such as an enterprise main office.

The third class, GSMService aggregates areas into a
general service perspective.

The fourth class ServiceLevel contains rules to cal-
culate downtime and conformance to a service level agree-
ment defined by properties. This represents the service sold
to the end-customer, and downtime is calculated as the total
time with open tickets.

We define two different service levels in Figure
1, GSMServiceLevel1 and GSMServiceLevel2,
which are subclasses to GSMServiceLevel where the
properties have been fixed.

We are now ready to show the instantiation of a small
service in Figure 4. It builds a service level service1
which monitors a GSMArea called area1 made up of two

def GSMServiceLevel1 =
GSMServiceLevel(MaxOutageTime => 24h,
OutageMeasurementPeriod => 6 months)

def GSMServiceLevel2 =
GSMServiceLevel(MaxOutageTime => 72h,
OutageMeasurementPeriod => 6 months)

Figure 3. Service Levels for GSM Service

create GSMCell cell1
create GSMCell cell2
create GSMArea area1
create GSMServiceLevel1 service1

connect area1.cells cell1
connect area1.cells cell2
connect service1.areas area1

Figure 4. Model Instantiation

cells, cell1 and cell2. This example corresponds to
a customer who has bought a service level agreement for
their main office with a maximum outage of 24 hours per
six month period.

Service monitoring needs to be integrated with external
tools such as alarm and trouble ticket systems to notify op-
erators about problems. This is handled by allowing exter-
nal systems to subscribe to attributes. This mechanism also
allows us to separate the presentation in the user interface
from the design of the calculation engine.

3 Prototype implementation

We have implemented an early prototype of the SALmon
language runtime and interpreter using the JavaTM J2SE
Framework [10] and the ANTLR parser generator [8].

3.1 Classes

In the current implementation service models can be
built from the basic building blocks:

Classes with inputs, anchors, properties and attributes.

Class inheritance where base class attributes can be over-
ridden.

Property values can be fixed through a declaration similar
to class inheritance.



class Service
anchor system

// Pass on the status attribute of the
// instance anchored to system at the
// time of the evaluation.
currentStatus = system.status@NOW

// Request the status of the last day
// and return the worst one.
dailyStatus = worstOf

system.status@(NOW, NOW-1day)
end

Figure 5. Time variable evaluation in attribute
expressions.

3.2 Expressions

Inputs and attributes can both be seen as lists of time-
stamped values. In this sub-section we will refer to inputs
and attributes as time variables viewed as lists of tuples
(V, T ) where V is the value and T is the time-stamp. With
this view we abstract the fact that the values of inputs are
available as semi-static data from external sources while at-
tributes are calculated on demand by the runtime engine.

The expression for an attribute evaluates using the other
available time variables, namely

• Inputs of the same class.

• Attributes of the same class.

• Attributes of other instances connected through an an-
chor.

The evaluation is performed by time-indexing. The cur-
rent implementation restricts time indexes to constants or
constant functions of the NOW parameter. Intervals of a
time-variable can also be retrieved by specifying a time
range. Examples of how time variables are evaluated are
given in Figure 5

The need to handle lists of values arises as a consequence
of two things: anchors aggregating multiple sub-service in-
stances and processing time-intervals of inputs or attributes.

The list comprehension is provided through the com-
mon higher order list processing functions map, fold and
filter:

map applies a unary function on all items in a list and re-
turns a list of the result.

fold reduces a list into a single value by recursively apply-
ing a binary function on a list, for example when sum-
ming a list of numbers.

filter takes a list and returns only the values accepted by a
predicate or unary boolean function.

The function arguments of higher order functions can be
supplied either as an anonymous function or a named helper
function. Helper functions depend only on their explicit
arguments, and as such can be considered as purely func-
tional. All functions are call by value. Basic operations for
arithmetic, boolean logic and comparison are also imple-
mented.

3.3 Execution engine

The runtime implementation provides basic functional-
ity to load definition layer source files, create instances of
classes, associate inputs with external data sources, connect
instances through anchors, and request values of attributes
of created instances.

All computations of the runtime begin with the request
of an attribute value. The expression of the attribute is inter-
nally computed within a stack-based machine which com-
putes a function after evaluating its arguments. This makes
the attribute the fundamental runtime calculation unit.

The default state of the runtime is a resting state. As
a request for an attribute at a certain time-stamp may de-
pend on the calculation of other attributes, this will result in
what can be considered a directed graph of calculation units
where non-connected units can be calculated independently
and hence in parallel.

In the prototype all data mapped to inputs reside in a
database. Attaining satisfactory database performance is
one of the main issues under investigation.

4 Scenarios

This section illustrates how to apply SALmon for fulfill-
ing a few typical requirements on Service Monitoring sys-
tems.

4.1 Service Levels

Service Levels are modeled as normal classes which con-
form to “best practice” from ITIL and TM Forum standards
and have a standard set of attributes (e.g. Figure 2).

They are associated with the operational objects through
an anchor. It will often be desirable to have a high level
SLA which aggregates the various SLAs into a single unit.
This is easily expressed in SALmon since we use classes to
model SLAs and Service Levels.



// Checks if outage is longer than window.
outageOk = binThreshold

((timeFilter NOW) - outageDuration)

// The percentage of remaining time.
timeRemain =
((timeFilter NOW) - outageDuration) /
(timeFilter NOW)

// Helper function which returns
// the correct service window.
timeFilter t =

if hour(t)<4 or hour(t)>19 then
4h

else
2h

Figure 6. Service Hours Calculation

A common feature of SLAs is that they are measured on
a periodic basis. The example below illustrates how outage
during the current month can be calculated by summing the
parameter h over the last month:

outage = sum h NOW month(NOW) 1m

4.2 Outage and Service Hours

Calculations need to be affected by time windows. For
example, it might be okay to take a piece of equipment out
of service if the customer is informed, or an SLA might only
apply during office hours.

Figure 6 shows how to use a time filter to calculate out-
age. The time filter defines a longer service window in be-
tween 7 p.m. and 4 a.m.

4.3 What-if scenarios and Goal-Seeking

One might want to see how a certain action or change of
parameter value changes the overall Service Quality. The
result should show the affected service components and the
resulting calculated values.

To solve this requirement, we have the ability to take a
snapshot of the state of the system, making a copy-on-write
version. Simulation input can then be applied to the copy in
order to study the effects.

A straight-forward example is to simulate a big network
outage. The simulation input is then driven by alarms and/or
work orders in the trouble-ticket system that will affect in-
puts in the service models.

The opposite of “what-if” is goal-seeking. If an operator
wants to increase the measured key performance indicators

of a service, how do we find the needed changes in the low
level inputs? The solution to this is to translate the model
into an expression that can be evaluated in a logical frame-
work which provides goal-seeking mechanisms. Important
in this application domain is that we only need good-enough
proposals, not the exhaustive list or necessarily the optimal
one. The goal-seeking can be done interactively with hu-
man intervention until a good-enough change is found.

4.4 Different views

It is important to be able to provide different views for
different roles such as customer care, technical mainte-
nance, and marketing.

The “core” model is a tree and the other views are vari-
ants of the tree structure like grouping cells in another way
then areas and offices, for example by type and revision.

4.4.1 Modeling of service tools

The example below shows a model which mimics the Open-
View Operations Service Navigator tool [5]. It is a simple,
yet useful tool to model services in a tree structure. Every
node has an alarm status. Furthermore, propagation rules
state how severities should propagate to parents and calcu-
lation rules specify how a parent node should calculate its
alarm state based on its children.

class SNNode
anchor* children
property propRule, calcRule
property name
ownStatus = OK
status =
snFunc propRule ownStatus children

5 Related work

One of the most important sources for service and SLA
modeling is the SLA handbook from TM Forum [11]. It
provides valuable insights into the problem domain but not
to the actual modeling itself.

TM Forum has also defined an accompanying service
model, SID, “System Information Model” [12]. SID is
comparatively high level and models entities in telecom op-
erators’ processes. However, SID is being refined and mov-
ing closer to the resources by incorporating CIM [3].

The Common Information Model, CIM, has an exten-
sive and feature-rich model including a modeling language
MOF (Managed Object Format). Key strengths in CIM
are the modeling guidelines and patterns. However, CIM
faces some major challenges since the UML/XML approach
tends to create unwieldy models. It is also aimed more at in-
strumentation than end-to-end service modeling.



Some of the major players behind CIM are now working
on the “Service Modeling Language”, SML [13]. SML is
used to model services and systems, including their struc-
ture, constraints, policies, and best practices. Each model
in SML consists of two subsets of documents; model def-
inition documents and model instance documents. Con-
straints are expressed in two ways, XML schemas defines
constraints on the structure and contents whereas Schema-
tron and XPath are used to define assertions on the contents.

An interesting feature is that SML addresses the problem
of service instantiation by providing XSLT discovery trans-
forms to produce instances from different sources. Other
attempts exist to specify service models as component in-
teraction with UML collaborations [9]. This kind of service
modeling serves purposes closer to the design of systems
than service models for QoS metrics.

A simple and pragmatic model for a general service
model is given by Garschhammer et al. [4]. This work
serves as a guide for modeling and identifies several im-
portant research areas.

SLAng [6] is a language focused on defining formal
SLAs in the context of server applications such as web ser-
vices. It uses an XML formalism for the SLAs. SLAng
identifies fundamental requirements needed in order to cap-
ture SLAs but differs from our current effort in that it “fo-
cuses primarily on SLAs, not service models in general”.

When it comes to programming languages with an inher-
ent notion of time, Benveniste et al. [2] give an overview
of the synchronous languages. These languages have the
concepts of variable relationships and of computing values
based on the previous value of a variable. However, they
have no notion of retaining values after the computation,
and they have a discretized notion of time.

Perhaps most closely related to SALmon is the notion
of stream data managers [1], which take a more database
oriented approach to the problem. This makes their syntax
less suitable for service models, and means that they have a
stricter view on time progress. However, a lot of the under-
lying work may be reused in the current setting.

6 Conclusion and Future Work

We have demonstrated a language for writing service
models, and shown the design of a prototype calculation
engine. Further, we conclude that the proposed system is a
good match against real-world scenarios.

In the future, the scaling and caching that is made possi-
ble by the parallel structure of the language should be fur-
ther examined. This work has been started [7], but deserves
more attention.

The database layer should be updated to handle large
numbers of concurrent but simple requests for input data at
specific times or intervals. Since the requested data might

be for a single primitive data type the overhead for each re-
quest is critical.

Finally, the user information visualization should be ex-
amined. With the ultimate goal of being able to manage
large service structures, it is desirable to present relevant
information in an efficient manner.

References

[1] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar,
K. Ito, R. Motwani, U. Srivastava, and J. Widom. STREAM:
The Stanford Data Stream Management System. Technical
report, Stanford, 2004.

[2] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs,
P. Le Guernic, and R. de Simone. The synchronous lan-
guages 12 years later. Proceedings of the IEEE, 91(1):64–
83, 2003.

[3] DMTF. CIM Specification v2.15.0. Technical report, Dis-
tributed Management Task Force, 2007.

[4] M. Garschhammer, R. Hauck, H. Hegering, B. Kempter,
I. Radisic, H. Rolle, H. Schmidt, M. Langer, and M. Nerb.
Towards generic service management concepts a service
model based approach. Integrated Network Management
Proceedings, 2001 IEEE/IFIP International Symposium on,
pages 719–732, 2001.

[5] HP. HP OpenView Service Navigator. URL:
http://h20229.www2.hp.com/products/servnav/index.html,
2008.

[6] D. Lamanna, J. Skene, and W. Emmerich. SLAng: A Lan-
guage for Defining Service Level Agreements. Proc. of the
9th IEEE Workshop on Future Trends in Distributed Com-
puting Systems-FTDCS, pages 100–106, 2003.

[7] V. Leijon, P. A. Jonsson, and S. Wallin. A declarative ser-
vice modeling language with efficient caching. In Practical
Aspects of Declarative Languages (PADL’09), 2009. sub-
mitted.

[8] T. Parr. ANTLR parser generator. Accessed 14th of July,
2008. http://www.antlr.org/.

[9] R. Sanders, H. Castejon, F. Kraemer, and R. Bræk. Using
UML 2.0 collaborations for compositional service specifi-
cation. ACM/IEEE 8th International Conference on Model
Driven Engineering Languages and Systems (MoDELS),
2005.

[10] SUN Microsystems. J2SE 5.0. Accessed 14th of July, 2008.
http://java.sun.com/j2se/1.5.0/.

[11] TM Forum. SLA management handbook. Technical report,
TM Forum, 2004.

[12] TM Forum. Shared information data model. Technical re-
port, TM Forum, 2005.

[13] W3C. Service modeling language.
http://www.w3.org/TR/sml/, May 2008.

[14] S. Wallin and V. Leijon. Multi-Purpose Models for QoS
Monitoring. In 21st International Conference on Ad-
vanced Information Networking and Applications Work-
shops (AINAW’07), pages 900–905. IEEE Computer Soci-
ety, 2007.


